Data Visualization for Analysis of the NCNR Cold Neutron Source Max Carlson Nuclear Engineering Georgia Institute of Technology # **NCNR** #### **NBSR** - * Research reactor - * 20 MW - * Thermal neutron flux on order of 10¹⁴ n cm⁻² s⁻¹ - * Cold neutrons useful in experiments - * Longer wavelength - * Probe larger structures, smaller energy changes ## Cold vs. Thermal Neutrons | Moderator
Temperature (K) | Most Probable
Energy (eV) | Wavelength (Angstroms) | |------------------------------|------------------------------|------------------------| | 315 | .030 | 1.6 | | 20 | .002 | 6.4 | # Cold Neutron Source # Refrigerator - System to cool helium to 14K - * Rated for 3500W heat removal - * Keeps cold source cold! - Many active components need monitoring #### PLC - * Programmable Logic Controller - * Operates cold source and refrigerator without human intervention - * Checks all sensors and controls valves - * Sends out alarm if necessary # Troubleshooting - Need logs to find problem source - * RSView can keep log of sensor readings - * DBF format not easily accessible - * Default Trends viewer is limited - Pre-set time scale - * Pre-set Y Axis scale - Pre-set sensor display - Cannot export data #### **CSPlot** - * Parses DBF file format - Fully interactive chart - Mouse drag to set X and Y axes properties - * Mouse scroll to zoom in - * Series tracing - * Adding arbitrary sensors to chart - Export of chart to Excel file - * Save reference to chart for record-keeping #### **CSPlot: Demo** - * Reactor rundown - Vacuum gauge noise reduction - * Used by cold source team to diagnose problems and evaluate efficiency of solutions ### CSScreens - * Allows monitoring of cold source via network - * Schematic view - * Matches layout of existing software - * Read-only #### **CSScreens:** Demo - * Useful in checking the cold source is operational - * Currently used by reactor operators and cold source team # Vacuum Pump - Good vacuum is critical to cooling system - * Turbomolecular pumps have failed before - * Overheating - * Power surges - * Pump status -> PLC - Seal off failed vacuum pump # Vacuum Pump - * Inputs: Error (digital), Speed (analog) - * Outputs: On (digital), Control (digital) - * Wire connection to PLC - Logic code added to PLC - * Control buttons added to RSView - * Prototype successful - Installation requires reactor shutdown # Acknowledgments - * Julie Borchers - * Michael Middleton - * Dennis Nester - * Mike Rowe - * Robert Williams